MATLAB Additional Exercises

1. Celsius temperatures can be converted to Fahrenheit by multiplying by 9, dividing by 5, and adding 32. Assign a variable called \(C \) the value 37, and implement this formula to assign a variable \(F \) the Fahrenheit equivalent of 37 Celsius.

2. Set up a vector called \(t \) with five elements having the values: 1, 2, 3, 4, 5. Using \(t \), create assignment statements for a vector \(x \) which will result in \(x \) having these values:
 a) 2, 4, 6, 8, 10
 b) 1/2, 1, 3/2, 2, 5/2
 c) 1, 1/2, 1/3, 1/4, 1/5
 d) 1, 1/4, 1/9, 1/16, 1/25

3. Create a vector of the even whole numbers between 31 and 75.

4. Write a command that substitutes the 3rd row of matrix \(A \) with the 5th row of matrix \(B \) (use square matrixes of size 5x5).

5. Write a command that substitutes the 2nd column of matrix \(A \) with the 5th row of matrix \(B \) (use square matrixes of size 5x5).

6. Let \(x = \begin{bmatrix} 2 & 5 & 1 & 6 \end{bmatrix} \).
 a. Add 16 to each element
 b. Add 3 to just the odd-index elements
 c. Compute the square root of each element
 d. Compute the square of each element

7. Let \(x = \begin{bmatrix} 3 & 2 & 6 & 8 \end{bmatrix} \) and \(y = \begin{bmatrix} 4 & 1 & 3 & 5 \end{bmatrix} \) (\(x \) and \(y \) should be column vectors).
 a. Add the sum of the elements in \(x \) to \(y \)
 b. Raise each element of \(x \) to the power specified by the corresponding element in \(y \).
 c. Divide each element of \(y \) by the corresponding element in \(x \)
 d. Multiply each element in \(x \) by the corresponding element in \(y \), calling the result "z".
 e. Add up the elements in \(z \) and assign the result to a variable called "w".
 f. Compute \(x^*y - w \) and interpret the result ans.

8. Create an \(m \) by \(n \) matrix in MATLAB (use the \text{rand} function). Access each element of the matrix and set any value that is less than 0.5 to 0 and any value that is greater than (or equal) 0.5 to 1.

9. Write a MATLAB function that takes an integer as input and then build an \(n \) by \(n \) matrix with the numbers 1, 2, 3, \ldots, \(n \), on the main diagonal and zeros everywhere else.
10. Write a MATLAB function that takes an matrix x of size n by n as input and
returns a matrix y constructed as follows:

$$y_{ij} = \frac{x_{ij}+x_{ji}}{2}$$

11. Write a MATLAB function that finds the first negative element of the following
vector using a while loop:

$$x = [1\ 3\ 4\ -2\ -4\ 8\ -7] \quad (1)$$

12. Write a MATLAB function that finds the first even number in the following vector
using a while loop:

$$x = [1\ 3\ -6\ 7\ 8\ 2] \quad (2)$$